Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 173: 116338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417290

RESUMO

Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70ß, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/uso terapêutico
2.
CNS Neurosci Ther ; 30(2): e14411, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37577934

RESUMO

PURPOSE OF REVIEW: Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS: The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY: In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Metabolismo dos Lipídeos , alfa-Sinucleína/metabolismo , Levodopa , Neurônios Dopaminérgicos/metabolismo , Glucose
3.
Biomed Pharmacother ; 161: 114544, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934558

RESUMO

Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Estresse do Retículo Endoplasmático/fisiologia , Mamíferos
4.
Oxid Med Cell Longev ; 2022: 4665530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246397

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease second only to Alzheimer's disease in terms of prevalence. Previous studies have indicated that the occurrence and progression of PD are associated with mitochondrial dysfunction. Mitochondrial dysfunction is one of the most important causes for apoptosis of dopaminergic neurons. Therefore, maintaining the stability of mitochondrial functioning is a potential strategy in the treatment of PD. Voltage-dependent anion channel (VDAC) is the main component in the outer mitochondrial membrane, and it participates in a variety of biological processes. In this review, we focus on the potential roles of VDACs in the treatment of PD. We found that VDACs are involved in PD by regulating apoptosis, autophagy, and ferroptosis. VDAC1 oligomerization, VDACs ubiquitination, regulation of mitochondrial permeability transition pore (mPTP) by VDACs, and interaction between VDACs and α-synuclein (α-syn) are all promising methods for the treatment of PD. We proposed that inhibition of VDAC1 oligomerization and promotion of VDAC1 ubiquitination as an effective approach for the treatment of PD. Previous studies have proven that the expression of VDAC1 has a significant change in PD models. The expression levels of VDAC1 are decreased in the substantia nigra (SN) of patients suffering from PD compared with the control group consisting of normal individuals by using bioinformatics tools. VDAC2 is involved in PD mainly through the regulation of apoptosis. VDAC3 may have a similar function to VDAC1. It can be concluded that the functional roles of VDACs contribute to the therapeutic strategy of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Poro de Transição de Permeabilidade Mitocondrial , Doença de Parkinson/terapia , Canais de Ânion Dependentes de Voltagem/metabolismo , alfa-Sinucleína/metabolismo
5.
Front Pharmacol ; 11: 559046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982756

RESUMO

Acrylamide (ACR) is a common chemical used in various industries and it said to have chronic neurotoxic effects. It is produced during tobacco smoking and is also generated in high-starch foods during heat processing. Notoginsenoside R1 (NR1) is a traditional Chinese medicine, which is used to improve the blood circulation and clotting. The objective of this study was to investigate the mechanism of ACR-triggered neurotoxicity and to identify the protective role of NR1 by upregulating thioredoxin-1 (Trx-1). Our results have shown that NR1 could block the spatial and cognitive impairment caused by ACR administration. Bioinformatics analysis revealed that Trx-1 regulated autophagy via Integrin alpha V (ITGAV). NR1 could resist the ACR-induced neurotoxicity by upregulating thioredoxin-1 in PC12 cells and mice. The autophagy-related proteins like autophagy-related gene (ATG) 4B, Cathepsin D, LC3 II, lysosomal-associated membrane protein 2a (LAMP2a), and ITGAV were restored to normal levels by NR1 treatment in both PC12 cells and mice. Besides, we also found that overexpression of Trx-1 resisted ACR-induced autophagy in PC12 cells and downregulation of Trx-1 triggered autophagy induced by ACR in PC12 cells. Therefore, it could be concluded that Trx-1 was involved in the autophagy pathway. Besides, we also found that ITGAV was an intermediate node linking Trx-1 and the autophagy pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...